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Abstract. Degenerate Lagrangians have recently been studied through a pair of projection
operators induced by an almost-product structure [10]. We extend the projector method to regular
Poisson manifolds. This approach proves to be useful in the interpretation of the theories of
collective motion ofN -particle systems for applications in nuclear physics.

1. Introduction

Some authors have made progress in the study of constrained systems in a modern spirit
using projectors induced by almost-product structures ([3, 6, 9, 11, 12] and references
therein). This technique goes back to Bhaskara and Wiswanath [3] in solving the problem of
a global formulation of the local description of Dirac’s theory of constraints (see Sudarshan
and Mukunda [14], for instance) and also to de León and Rodrigues [8] in the global study
of the dynamics of singular (autonomous and non-autonomous) Lagrangian functions on
tangent bundles. The projector approach was applied recently to constraints defined by
singular Lagrangian systems [10] (for an early local study of constraints in the framework
of projection operators we refer to the papers [1, 2]).

One of the purposes of this article is to cover the subject in the more general context
of a manifold endowed with a Poisson structure of constant rank. As we shall see, in
the particular case of second-class constraints, the projectors are naturally defined by the
constraint functions. The first-class case is more difficult since we need to fix the gauge
but we only have the Poisson tensor and no other structure. A classical procedure [15] is
to try to choose new constraints functionsf a such that the matrix({ya,f b}) is invertible,
where{ya} are first class and so we may reproduce the projector method.

The other purpose is to give an example such that the projector method is adequate to
study the behaviour of some physical systems around critical values. We apply the projector
method to separate the translation motion of the centre of mass in theN -particle system.
N is taken as a parameter of the physical system. Then it is shown that in the particular
case of equal masses, the problem has a symplectic formulation in the limit of very large
N (i.e. whenN →∞) corresponding to the independent-particle model.

The work is structured as follows. In section 2 we give some definitions for clarity
and support for the next sections. Projectors and second-class constraints are examined
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in section 3. We give global and local conditions for the construction of the Dirac’s
bracket from a projection operator. We conclude with the example. All objects considered
throughout the paper as manifolds, mappings, forms, vector fields, etc are ofC∞ class. The
manifolds are finite dimensional, Hausdorff, paracompact, etc. The summation convention
on repeated indices is adopted.

2. Preliminaries

We first recall that analmost-product(or involutive) structureon a manifoldW is a tensor
field C of type (1, 1) onW such thatC2 = I. The manifoldW endowed with an almost-
product structureC is said to be analmost-product manifold. If we set

A = 1
2(I +C) B = 1

2(I −C)
then

A2 = A AB = BA = 0 B2 = B A+B = I. (1)

Conversely, if(A,B) is a pair of tensor fields of type(1, 1) onW satisfying (1), then
C = A − B is an almost-product structure onW . Thus this structure is characterized
by the complementary pair ofprojectors (A,B), with A : TW → ImA ⊂ TW ,
B : TW → ImB ⊂ TW such thatTW = ImA⊕ ImB.

Let (W,Π) be a Poisson manifold, whereΠ is the Poisson’s tensor field(a skew-
symmetric tensor field of type(2, 0) onW verifying the Jacoby identity

Π(α,Π(β, γ ))+Π(β,Π(γ, α))+Π(γ,Π(α, β)) = 0).

The Poisson bracket is defined byΠ(df, dg) = {f, g}, for all f, g ∈ C∞(W), whereC∞(W)
is the space ofC∞ functions onW .

A Poisson structureΠ on a manifoldW induces a bundle morphism] : T ?W → TW

such that

α](β) = Π(α, β)

whereα and β are one forms onW . In particular, if f, g ∈ C∞(W) then df ](dg) =
Π(df, dg) = {f, g}.

For a one-formα onW we shall denote byXα = ](α) the corresponding Hamiltonian
vector field. In what follows we shall consider only regular Poisson manifolds, referred
to as Poisson manifolds, for brevity. This means that thecharacteristic spaceIm ]x =
]x(T

?
x W) ⊂ TxW at x has the same dimension for allx ∈ W .

3. Projectors

Let (W,Π) be a Poisson manifold,Q : TW → TW a (1, 1)-tensor field onW andQ? the
adjoint operator ofQ, i.e.Q?(γ ) = γ ◦Q, for all one formsγ onW .

Proposition 3.1.If Q ◦ ] = ] ◦Q? thenΠ(Q?(α), β) = Π(α,Q?(β)).

Proof. Indeed,

Π(Q?(α), β) = Q?(α)](β) = α(Q ◦ ])β
= α](Q?β) = Π(α,Q?(β)).

�
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Now, ] mapsT ?W to TW and so the adjoint]? is also a map fromT ?W to TW and
in fact ]? = −] sinceΠ is skew-symmetric. Therefore the assumption of proposition 3.1
says thatQ◦] = −(Q◦])?. We note thatQ(Xβ) = XQ?β andQ?(α)(Xβ) = −Q?(β)(Xα),
since

Q?(α)(Xβ) = Q?(α)](β) = Π(Q?(α), β)

−Q?(β)(Xα) = −Q?(β)](α) = −Π(Q?(β), α) = Π(Q?(α), β).

Proposition 3.2.Suppose thatQ? is a projector, i.e.Q?◦Q? = (Q?)2 = Q?. If Q◦] = ]◦Q?

then

Π(α,Q?(β)) = Π(Q?(α),Q?(β)). (2)

Furthermore, ifP ? = I −Q?, then

Π(P ?(α),P ?(β)) = Π(α, β)−Π(Q?(α), β) ∀α, β. (3)

In particular, ifα = df , β = dg, wheref, g ∈ C∞(W) then

Π(P ?(df ),P ?(dg)) = {f, g} −Π(Q?(df ), dg). (4)

Proof. We have

Π(α,Q?(β)) = Π(α, (Q?)
2
(β)) = Π(α,Q?[Q?(β)]) = Π(Q?(α),Q?(β)).

The use of the bilinearity ofΠ and a very simple calculation shows (3) and (4).�

We remark that obsviouslyΠ(α,P ?(β)) = Π(P ?(α),P ?(β)) and also that the tensor
field Π(P ?(α),P ?(β)) is a Poisson tensor iff the distribution ImP is involutive (see [3]).
This is the case when there is defined a pre-symplectic form onW such that Kerω = ImP
(see [10]).

Suppose thatK is an embedded manifold ofW , locally characterized by a coordinate
system(yi), i ∈ {1, . . . ,dimW }, defined on a neighbourhoodV ⊂ W of some pointz of
K ⊂ W such thaty = (ya)|U=K∩V ≡ 0, a ∈ {1, . . . ,dimW − dimK}, are independent
second-class constraints(the set{dya} is linearly independent) and the matrix with elements
λab = {ya, yb} is non-singular and skew-symmetric (thus the number of contraints are even).
Then the set{Xa = ](dya)} of Hamiltonian vector fields is linearly independent. As usual,
dya(Xb) = dya(](dyb)) = {ya, yb} = Π(dya, dyb).

The functionsya and the Hamiltonian vector fieldsXa suggest the definition of the
following tensor field

Q = λab dyb ⊗Xa (5)

whereλab are a set of smooth functions onW .
We now examine the conditions for such aQ to be locally aprojector, verifying the

hypothesis of proposition 3.1. Let us setMad = λabλbcλcd . As

Q?(α) = [α(Xa)λab] dyb Q?(dyb) = [λbaλac] dyc (6)

we have

(Q?)2(α) = Q?(α(Xa)λab dyb) = [α(Xa)λab]Q
?(dyb)

= α(Xa)[λabλbcλcd ] dyd = [α(Xa)Mad ] dyd.

If we suppose now that the functionsλab are elements of the inverse matrix of(λab),
that is,λbaλac = δbc thenMab = λab and so(Q?)2(α) = (Q?)(α) for all α.
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Now,

(Q ◦ ])(α) = Q(Xα) = [dyb(Xα)λab]X
a,

(] ◦Q?)(α) = ](α(Xb)λba dya) = α(Xb)λba](dya) = [α(Xb)λba]X
a

and

dyb(Xα) = dyb](α) = −α](dyb) = −α(Xb) (7)

and since(λba) is skew-symmetric it follows thatQ ◦ ] = ] ◦Q∗.
Consider the particular case where the forms are exact, sayα = df , β = dg and set

Π(P ?df,P ?dg)
def︷︸︸︷= {f, g}D.

Then it is straightforward to show that

{f, g}D = {f, g} − {f, ya}λab{yb, g}
which is the modified Poisson’s bracketintroduced by Dirac to deal with second-class
constraints in his theory.

We close this section with the following remarks: (a) The tensor fieldΠ(Q?,Q?) is
locally a bivector of the following form

1
2λabX

a ∧Xb (8)

since

Π(Q?α,Q?β) = α(Xb)λba dya(Xβ)

= λabα(Xb)β(Xa) = 1
2λabX

a ∧Xb(α, β).
(b) If K is locally characterized by first-class functions{ya}, that is {ya, yb} vanishes on
K, then a classical procedure is to choose new constraints functionsf a such that the matrix
with entriesθab = {ya,f b} is invertible. If we set

Q = θab df b ⊗Xa

then we may reproduce the above procedure. The mixed (first- and second-class) case is
obtained in a similar way [10].

4. An example: The centre of mass of theN -particles system

Most equations describing the behaviour of physical systems contain parameters. Of
particular interest is the behaviour of solutions when such a parameter approaches a critical
value, usually zero or infinity [16]. In this example we shall see that the projector method
proves to be useful in the interpretation of the theories of collective motion ofN -particle
systems for applications in nuclear physics (we shall considerN as the parameter, the
number of intrinsical particles).

In such theories it is assumed that the system can be separated in collective mode,
described by collective coordinates(q,p) and independent particle motions described by
intrinsic coordinates(q1, . . . , q3(N−1), p1, . . . , p3(N−1)). This is obtained by introducing
suitable constraints on the original 6N coordinates of the phase space. For more details see
[7, 13] and references therein.
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So, let us consider a system ofN -particles each with unit mass. The phase space
relative to the centre of mass is the standard symplectic manifoldM = (R6N, ω), whose
coordinates are subjected to the second-class constraints

φ1
a =

N∑
i=1

ria = 0 a = x, y, z φ2
a =

N∑
i=1

pia = 0 a = x, y, z.

Hereria andpia are the cartesian components of the vectorsr andp in R3. In the absence
of external forces the Hamiltonian is

H =
∑
i

p2
i

2
−
∑
i<j

V (|ri − rj |).

The associated Hamiltonian vector field is given by

XH = ](dH) =
∑
i,a

[
pia

∂

∂ria
+ ∂V (|ri − rj |)

∂ria

∂

∂pia

]
and it is easy to see that

Π =
∑
a

N∑
i

∂

∂pia
∧ ∂

∂ria

is the standard Poisson tensor, whose representation is given by the 6N × 6N matrix

Π =
(

0 I
−I 0

)
where0 andI are 3N × 3N null and unit matrices respectively. In order to deal with this
constrained system by preserving the symmetry between the particles we use the projector
method. We have,

dφ1
a =

N∑
i

dria dφ2
a =

N∑
i

dpia

X1
a = ](dφ1

a) = −
∑
i

∂

∂pia
X2
a = ](dφ2

a) =
∑
i

∂

∂ria
.

According to (5) the projectorQ is written as

Q = λAB dφB ⊗XA A,B = 1, 2.

As the constraints are second class, the functionsλAB are the matrix elements of the inverse
of the matrixλ defined by

λ11
a = λ22

a = (dφAa [XAa ]) = 0

λ12
a = −λ21

a = (dφ1
a [X2

b]) = −(dφ2
a [X1

b]) = −δab
∑
ij

δij = −N

that is

λ−1 = 1

N


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 .
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Therefore the projector is given by

Q = 1

N

∑
ij,a

(
drja ⊗ ∂

∂ria
+ dpja ⊗ ∂

∂pia

)
or

Q =
(
Q 0
0 Q

)
whereQ is the 3N × 3N matrix

Q = 1

N


1 1 · · · 1 · · · 1
...

...
...

...
...

...

1 1 · · · 1 · · · 1
...

...
...

...
...

...

1 1 · · · 1 · · · 1

 .
It is easy to see thatQ2 = Q and thenQ2 = Q. The complementary projetor is

P =
∑
ij,a

(
δ
j

i −
1

N

)(
drja ⊗ ∂

∂ria
+ dpja ⊗ ∂

∂pia

)
or in matrix representation

P = I6N −Q =
(
P 0
0 P

)
whereP is the 3N × 3N matrix

P = 1

N


N − 1 −1 . . . −1
−1 N − 1 −1 . . .

. −1 N − 1 −1 . .

. . −1 N − 1 −1 .

. . . −1 N − 1 −1
−1 . . . −1 N − 1

 .
The constrained tensorΠP = Π(P ?,P ?), is

ΠP =
∑
ij,a

(
δ
j

i −
1

N

)(
∂

∂pia
∧ ∂

∂rja

)
or in matrix representation

ΠP =
(

0 P
−P 0

)
.

This Poisson tensor gives rise to the following Poisson brackets restricted to the 6(N−1)
dimensional symplectic leaf defined by the constraints:

{ria, rjb} = {pia,pjb} = 0

{rjb,pia} = δab
(
δij −

1

N

)
a, b = x, y, z. (9)

The dynamics on the leaf is determined by the tangent Hamiltonian vector fieldXH
obtained by the projection ofXH

]P ?(dH) = XH =
∑
i,a

[
(pia − 〈pa〉) ∂

∂ria
+
(
∂V (|ri − rj |)

∂ria
− 〈Fa〉

)
∂

∂pia

]
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where

〈pa〉 = 1

N

∑
i

pia, 〈Fa〉 = 1

N

∑
i

∂V (|ri − rj |)
∂ria

.

From equation (9) we see that whenN →∞ the system is free of constraints (indeed
the problem has a symplectic formulation). This means that only for a large number of
particles the independent-particle model is a good approximation [13]. This phenomenon
is common in mechanical systems described by Poisson manifolds as was pointed out in
[16]: when a physical parameter in the system reaches a limiting value (usually 0 or∞)
the limiting system has a symplectic formulation.

Acknowledgment

We would like to acknowledge the referees for the suggestions.

References

[1] Amaral C M 1975 Configuration space constraints as projectors in many-body systemsNuovo CimentoB 25
817–27
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