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Abstract. Degenerate Lagrangians have recently been studied through a pair of projection
operators induced by an almost-product structure [10]. We extend the projector method to regular
Poisson manifolds. This approach proves to be useful in the interpretation of the theories of
collective motion ofN-particle systems for applications in nuclear physics.

1. Introduction

Some authors have made progress in the study of constrained systems in a modern spirit
using projectors induced by almost-product structures ([3, 6, 9, 11, 12] and references
therein). This technique goes back to Bhaskara and Wiswanath [3] in solving the problem of
a global formulation of the local description of Dirac’s theory of constraints (see Sudarshan
and Mukunda [14], for instance) and also to débheand Rodrigues [8] in the global study

of the dynamics of singular (autonomous and non-autonomous) Lagrangian functions on
tangent bundles. The projector approach was applied recently to constraints defined by
singular Lagrangian systems [10] (for an early local study of constraints in the framework
of projection operators we refer to the papers [1, 2]).

One of the purposes of this article is to cover the subject in the more general context
of a manifold endowed with a Poisson structure of constant rank. As we shall see, in
the particular case of second-class constraints, the projectors are naturally defined by the
constraint functions. The first-class case is more difficult since we need to fix the gauge
but we only have the Poisson tensor and no other structure. A classical procedure [15] is
to try to choose new constraints functiofi$ such that the matrix{y®, f*}) is invertible,
where{y“} are first class and so we may reproduce the projector method.

The other purpose is to give an example such that the projector method is adequate to
study the behaviour of some physical systems around critical values. We apply the projector
method to separate the translation motion of the centre of mass iV{particle system.

N is taken as a parameter of the physical system. Then it is shown that in the particular
case of equal masses, the problem has a symplectic formulation in the limit of very large
N (i.e. whenN — o0) corresponding to the independent-particle model.

The work is structured as follows. In section 2 we give some definitions for clarity

and support for the next sections. Projectors and second-class constraints are examined
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in section 3. We give global and local conditions for the construction of the Dirac’s
bracket from a projection operator. We conclude with the example. All objects considered
throughout the paper as manifolds, mappings, forms, vector fields, etc &r& ofass. The
manifolds are finite dimensional, Hausdorff, paracompact, etc. The summation convention
on repeated indices is adopted.

2. Preliminaries

We first recall that amlmost-product(or involutive) structureon a manifoldW is a tensor
field C of type (1, 1) on W such thatC? = I. The manifoldW endowed with an almost-
product structure”' is said to be aralmost-product manifoldIf we set

A=1I+0) B=3iI-0C)
then
A=A AB=BA=0 B’=RB A+B=1. (1)

Conversely, if(A, B) is a pair of tensor fields of typél, 1) on W satisfying (1), then
C = A — B is an almost-product structure di. Thus this structure is characterized
by the complementary pair oprojectors (A, B), with A : TW — ImA C TW,
B:TW — ImB Cc TW such thatt W = ImA & ImB.

Let (W, II) be a Poisson manifold, wheM is the Poisson’s tensor fielda skew-
symmetric tensor field of typ&, 0) on W verifying the Jacoby identity

(e, II(B, y)) + IL(B, T(y, o)) + IL(y, (e, B)) = O).

The Poisson bracket is defined B(d f, dg) = {f, g}, for all f, g € C>*(W), whereC> (W)
is the space o€ functions onW.

A Poisson structur&l on a manifoldW induces a bundle morphisth: T*W — TW
such that

at(p) = IL(a, B)

where«a and g are one forms orW. In particular, if f,g¢ € C*(W) then dft(dg) =

For a one-formx on W we shall denote by, = ti(«) the corresponding Hamiltonian
vector field. In what follows we shall consider only regular Poisson manifolds, referred
to as Poisson manifolds, for brevity. This means that ¢haracteristic spacdm i, =
8. (TrW) C T, W atx has the same dimension for alle W.

3. Projectors

Let (W, II) be a Poisson manifoldQ : TW — TW a (1, 1)-tensor field onW andQ* the
adjoint operator ofR, i.e. Q*(y) = y o Q, for all one formsy on W.

Proposition 3.1.If Q o =t o Q* thenII(Q*(«), B) = II(a, Q*(B))-

Proof. Indeed,

Q" (), B) = Q" (@)E(B) = a(Q o)
=afl(Q"B) = Il(a, Q*(B)).
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Now,  maps7T*W to TW and so the adjoint* is also a map fronT*W to TW and

in fact * = — sincelIl is skew-symmetric. Therefore the assumption of proposition 3.1
says thaQ off = —(Qot)*. We note thalQ(Xp) = X¢s andQ* (@) (Xp) = —Q*(B)(X,),
since

Q" ()(Xp) = Q*()i(B) = IN(Q" (), B)

Q" (B)(Xo) = —Q*(B)i(x) = —II(Q"(B), @) = IL(Q (), B).
Proposition 3.2.Suppose thaf* is a projector, i.eQ*oQ* = (Q*)? = Q*. If Qott = #oQ*
then

(e, Q" (B)) = INQ* (@), Q" (B)). 2
Furthermore, ifP* = I — Q*, then

II(P*(a), P*(B)) = (e, B) — IL(Q" (@), B) Vo, B. 3)
In particular, ife = df, 8 = dg, wheref, g € C*°(W) then

II(P*df), P*(dg)) = {f. g} — IL(Q"(df), dg). (4)

Proof. We have

(e, Q*(B)) = H(, (QH*(B)) = (e, Q[Q* (A = ILQ* (@), Q*(B)).
The use of the bilinearity ofI and a very simple calculation shows (3) and (4).O

We remark that obsviousl¥I(«, P*(8)) = II(P*(«), P*(8)) and also that the tensor
field TI(P*(«), P*(B)) is a Poisson tensor iff the distribution 1B is involutive (see [3]).
This is the case when there is defined a pre-symplectic foriW asuch that Ketw = Im P
(see [10]).

Suppose thaK is an embedded manifold d¥, locally characterized by a coordinate
system(y'),i € {1,..., dim W}, defined on a neighbourhodd c W of some pointz of
K C W such thaty = (y9)|y=knv = 0,a € {1,...,dmW — dimK}, areindependent
second-class constrain{she set{dy“} is linearly independent) and the matrix with elements
A% = {y*, y*} is non-singular and skew-symmetric (thus the number of contraints are even).
Then the sefX“ = g(dy*)} of Hamiltonian vector fields is linearly independent. As usual,
dy“(X?) = dy“(#(dy”)) = {y*, "} = II(dy*, dy?).

The functionsy? and the Hamiltonian vector field¥“ suggest the definition of the
following tensor field

Q =iady’ ® X ®)

wherea,;, are a set of smooth functions d#.
We now examine the conditions for suchthto be locally aprojector, verifying the
hypothesis of proposition 3.1.et us setM,; = AupA’Aeq. AS

Q* (@) = [a(X“)Xap]dy” Q*(dy”) = [A"Xac] dy* (6)
we have
(@) = Q*(@(X“hap dy?) = [ (X)) Q* (dy”)
= (X[ apA" Aeal dy? = [a(X“) Mg dy’.

If we suppose now that the functiong, are elements of the inverse matrix @f?),
that is, A A,. = 8¢ then M, = 1., and so(Q*)*(@) = (Q*)(«) for all .
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Now,

(Q o) (@) = Q(Xy) = [y’ (Xa)har] X,
(0 Q") (@) = #(@(X")hpa dy*) = A (X)) Apat(dy?) = [ (XP)Apa] X*

and
dy’ (Xe) = dy’8(@) = —at(dy’) = —a(X") 7

and since(A,,) is skew-symmetric it follows thaf) o f = 1 o Q*.
Consider the particular case where the forms are exacty saylf, 8 = dg and set

def
II(P*df, P*dg) = (. ¢}p-

Then it is straightforward to show that

{f.8lp ={f 8} —{f. Y Prarly’. g}

which is the modified Poisson’s brackentroduced by Dirac to deal with second-class
constraints in his theory.

We close this section with the following remarkst) (The tensor fieldlI(Q*, Q*) is
locally a bivector of the following form

Shap X A X" (8
since

I(Q*a, Q*B) = a(X")dpy dy* (Xp)
= rapt (X")B(XY) = 3hap X* A X" (e, B).

(b) If K is locally characterized by first-class functiops'}, that is {y*, y*} vanishes on
K, then a classical procedure is to choose new constraints fungftiossch that the matrix
with entriesp® = {y*, f*} is invertible. If we set

Q: abd.fh®Xa

then we may reproduce the above procedure. The mixed (first- and second-class) case is
obtained in a similar way [10].

4. An example: The centre of mass of théV-particles system

Most equations describing the behaviour of physical systems contain parameters. Of
particular interest is the behaviour of solutions when such a parameter approaches a critical
value, usually zero or infinity [16]. In this example we shall see that the projector method
proves to be useful in the interpretation of the theories of collective motiawN-pérticle
systems for applications in nuclear physics (we shall consiess the parameter, the
number of intrinsical particles).

In such theories it is assumed that the system can be separated in collective mode,
described by collective coordinatég, p) and independent particle motions described by
intrinsic coordinates(qs, ..., gaw-1), P1, -- -, Pav—1)). This is obtained by introducing
suitable constraints on the originalécoordinates of the phase space. For more details see
[7, 13] and references therein.
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So, let us consider a system of-particles each with unit mass. The phase space
relative to the centre of mass is the standard symplectic mani¥éle= (R, w), whose
coordinates are subjected to the second-class constraints

N N
¢;I'=Z’I",‘a=0 a=x,y,2q ¢§=Zpia=0 a=x,y,2.
i=1 i=1

Herer;, andp;, are the cartesian components of the vecioedp in R3. In the absence
of external forces the Hamiltonian is

2
p;
H=)_ "5 =D Vri—m.
i i<j
The associated Hamiltonian vector field is given by
a ovV(r;—mr;j) a
Xy =8dH) =) [p,-aa ]

ia Tia oTiq 0Pia

and it is easy to see that

Yoo 9
H:Za:z /\a’l",'a

apia

is the standard Poisson tensor, whose representation is given bytlke66/ matrix

m-(5 o)

where0 and I are 3V x 3N null and unit matrices respectively. In order to deal with this
constrained system by preserving the symmetry between the particles we use the projector
method. We have,

N N
d¢j = Z driu d¢3 = Z dpia

ad
81*,-,, '

ad
X;=tdp) =—) G Xa= ) = >

According to (5) the projecto® is written as
Q = rapdgp” @ X* A, B=12

As the constraints are second class, the functignsare the matrix elements of the inverse
of the matrixA defined by

At =22 = (dp X, =0
M2 =22 = (X7 = —(dp2X}]) = =8 ) _8;j = —N
ij

that is
0O 1 0 0 O
-1 0 0 0 0 O
)ﬁl—i 0O 0 01 0 O
N|] O O -1 0 0 O
O 0 0 0 0 1
O 0 0 0 -10
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Therefore the projector is given by

1 d d
Q N Z < Tj ® ariu * pj ® apia)

ij,a
or
_(e o
Q‘(O Q)
where Q is the 3V x 3N matrix
11 --- 1 --- 1
N I R
=111 ... 1 ... 1
< N . . . . . .
11 --- 1 --- 1

It is easy to see tha®? = Q and thenQ? = Q. The complementary projetor is
; 1 d ad
P= 8 ——J|drii® — +dp;u ® —
;(l N)<Tj ®3ria+ P ®8pia)

or in matrix representation

P=IGN—Q=<7; 7(;)

whereP is the 3V x 3N matrix
N-1 -1 . ) . -1
-1 N-1 -1 )
1 . -1 N-1 -1 .

N . . -1 N-1 -1 .

. ) . -1 N-1 -1

-1 ) . ) -1 N-1

The constrained tensdlp = II(P*, P*), is

1 d 9
-2 (0 3) ()
ij,a N 3pm 31"],1
or in matrix representation
o P
(2 7)
This Poisson tensor gives rise to the following Poisson brackets restricted ta\Mhelp

dimensional symplectic leaf defined by the constraints:

{Tias Tjp} = {Pias Pjp} =0
1 )
{Tb, Pia) = &) (8}_N> a,b=x,y,z.

The dynamics on the leaf is determined by the tangent Hamiltonian vectorXigld
obtained by the projection oty

- 3 AV(ri — 3
EP dH) =Xy =y [(p,-a —(pa) 5+ (“;””“ - <Fa>> i ]

i,a
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where

1 1 3V(|’I", — Tj|)
(Pa) = NZp,a,<Fa> = NZ T
From equation (9) we see that whah— oo the system is free of constraints (indeed
the problem has a symplectic formulation). This means that only for a large number of
particles the independent-particle model is a good approximation [13]. This phenomenon
is common in mechanical systems described by Poisson manifolds as was pointed out in
[16]: when a physical parameter in the system reaches a limiting value (usuallyxf) or
the limiting system has a symplectic formulation.
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